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Cross-polarization transfer is employed in virtually every solid-state NMR experiment to enhance mag-
netization of low-gamma spins. Theory and experiment is used to assess the magnitude of the final quasi-
stationary magnetization amplitude. The many-body density matrix equation is solved for relatively large
(up to N = 14) spin systems without the spin-temperature assumption for the final spin states. Simula-
tions show that about 13% of the thermodynamic limit is still retained within the proton bath. To test this
theoretical prediction, a combination of a reverse cross-polarization experiment and multiple contacts is
employed to show that the thermodynamic limit of magnetization cannot be transferred from high- to
low-gamma nuclei in a single contact. Multiple contacts, however, fully transfer the maximum magneti-
zation. A simple diffusion on a cone model shows that slow dynamics can affect the build up profile for
the transferred magnetization.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Since the pioneering work of Hartmann and Hahn [1] and Lurie
and Slichter [2] followed by Waugh and co-workers [3] and Ernst
and co-workers [4], cross-polarization has become the most essen-
tial part of virtually every solid-state NMR experiment. Here the
magnetization enhancement for the low-gamma spins is achieved
by bringing the dilute spins in equilibrium with the proton bath
when the Hartmann–Hahn condition is fulfilled. Several papers de-
scribe theories of cross polarization in great detail [5–9]. According
to the widely used spin-temperature hypothesis, under the reso-
nant Hartmann–Hahn condition a thermal equilibrium is attained
between the low- and high-gamma spin reservoirs. The spin tem-
peratures of the two species in the doubly tilted rotating frame be-
come equalized, and the conservation of energy argument quickly
leads to the conclusion that the magnetization enhancement of the
low spins is proportional to the ratio of the gamma factor of the
high spin to that of the low spin [3]. For instance, when the 15N
spins are brought in contact with the abundant protons, the mag-
netization enhancement of the former is expected to be around 10.
Other papers [10–12], however, point out to the existence of uni-
versal bounds to spin dynamics that are purely quantum–mechan-
ical in nature. When thermal relaxation is too slow on the time
scale of the relevant NMR experiment, they can lead to the limits
of allowable polarization transfer that may differ from those ob-
tained from the intuitive thermodynamic arguments based on con-
servation of energy or entropy of an isolated spin system obeying
unitary evolution [13]. Furthermore, Brüschweiler and Ernst
ll rights reserved.
[14,15] noted the existence of non-ergodic quasi-equilibria in
short linear chains of like spins, which means that energy is not
the only invariant of motion in dipolar-coupled spin systems.
The final or ‘‘quasi-equilibrium’’ observable state in those systems
strongly depends on the initial condition and relative arrangement
of the interacting spins. Thus, the evolution of the spin system is
said to be non-ergodic. This behavior, however, can be made
ergodic if thermal motions are introduced, i.e. when the distance
between the spins are randomly varied at each step of the integra-
tion of the Liouville–von Neumann equation describing the evolu-
tion of the density matrix, or when the much more general
stochastic Liouville equation [16,17] is employed. The currently
available computational power allows one to investigate the above
important ideas from first principles by involving direct diagonal-
ization of the relevant Hamiltonians for a relatively large number
of spins, >10. More elaborate projection and space restriction tech-
niques allow one to extend the computationally tractable spin
space even further, up to 15 and even more spins [18]. The subject
of the present paper is to address the classical problem of cross-
polarization transfer from directly solving the many-body density
matrix equation, and to compare the results to the predictions
arising from the spin-temperature hypothesis. Simple solid-state
NMR experiments are performed to complement the results of
the simulations. Next, we attempt to evaluate the effect of local
motions using a simple model of diffusion on a cone to estimate
the efficiency of cross polarization in the presence of dynamics.
The latter is especially important for solid-state NMR of membrane
proteins where dynamic regions may be present, such as the con-
necting loops or mobile termini, or slow rotational motion of the
protein as a whole.

http://dx.doi.org/10.1016/j.jmr.2011.01.006
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2. Cross-polarization transfer in the absence of dynamics

In the classical cross-polarization (CP) experiment, the Hamilto-
nian operator in the doubly tilted rotating frame [7] can be written
as (setting ⁄ = 1):

H ¼ xSSz þxI I
total
z þ

XN�1

n¼1

anSxIðnÞx þ
XN�1

i<j

bij
3
2

IðiÞx IðjÞx �
1
2

IðiÞIðjÞ
� �

ð1Þ

Here xS and xI are the radiofrequency (rf) irradiation amplitudes of
the low and high spins, respectively. The interaction constants be-
tween the low S-spin and N � 1 protons (the I spins) are given by
an, and bij describe the interactions amongst the protons them-
selves. When the amplitudes xS and xI are much larger than the
dipolar coupling constants, one can use the truncated Hamiltonian
at the exact Hartmann–Hahn match, xS = xI:
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Using the formal solution for the density matrix equation, we write
for the time evolution of the normalized cross-polarization build-up
on the S-spin:

GðtÞ ¼ TrðSze�iHT taIzeiHT tÞ
TrðS2

z Þ
¼ a

2N�2 TrðSze�iHT tIzeiHT tÞ

¼ a
2N�2 Tr½Sze�iHT tðSz þ Iz � SzÞeiHT t �

¼ a 1� TrðSze�iHT tSzeiHT tÞ
2N�2

� �
ð3Þ

Here the factor a � cI�hB0=kBT arises from the initial equilibrium
density matrix of the I spins, q(0) = aIz, ‘‘Tr’’ stands for the matrix
trace, and we have used the fact that the operator (Sz + Iz) commutes
with HT. T1q relaxation effects have been neglected for the typical
lengths of CP contacts employed in solid-state NMR experiments
(several milliseconds). Following Waugh [13], we expand the Ham-
iltonian in terms of its eigenvectors and eigenvalues:

GðtÞ ¼ a 1�
Tr
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4
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A key realization comes from the fact that HT is an even centro-
symmetric matrix, due to the presence of the proton–proton inter-
action Hamiltonian Hlike of Eq. (2), or, in its explicit matrix form,
1 � Hlike , where 1 is a 2 � 2 unit matrix. Therefore, its eigenvectors
will be either symmetric or skew-symmetric [19]. As a result, the
diagonal matrix elements for j = k will vanish for any eigenvector.
Indeed, for every symmetric or skew-symmetric vector of the gen-
eral form v = x ± Jx, where J is a permutation matrix having all ones
in its secondary diagonal and zeros elsewhere, we have:

vþSzv ¼ ðx� JxÞþSzðx� JxÞ ¼ xþSzxþ xþJSzJx� xþJSzx� xþSzJx ¼ 0

ð5Þ

since J Sz J = �Sz and J2 = 1. Consequently, when we invoke time
averaging to determine the quasi-equilibrium (terminal) value of
G(1), all the diagonal and oscillatory terms vanish except for the
case of degenerate eigenvalues, kk = kk0. Thus, we obtain:

Gð1Þ ¼ a 1�
P

kjhk
0jSzjkij2

2N�2

 !
6 a ð6Þ
Here the summation is carried over the values of k together with the
indices k0 that correspond to the same eigenvalue, kk. Since every
term in the summation is non-negative, the thermodynamic limit
for the polarization transfer, a, can only be achieved when all the
terms in the sum are identically zero, which is unlikely. Therefore,
this quantum mechanical treatment is in an apparent contradiction
with the result based on the thermodynamic arguments, although
this contradiction is not as striking as the magic echoes [20], for
example.

The thermodynamic limit can nevertheless be achieved if multi-
ple contacts with the proton reservoir are invoked. This can be
accomplished using a modified version of the original multiple-
contact experiment [3] as shown in Fig. 3b. Between the contacts,
the low-gamma spin magnetization (i.e. the terms corresponding
to the operator Sz) is stored along the z-axis owing to its very long
T1 relaxation (typically tens of seconds or longer as observed for
the 15N spins). During a sufficiently long wait time between the
contacts, the proton T1 relaxation destroys multiple quantum
coherences, and the equilibrium magnetization of the S-spin after
an n0th contact is given by the following recursion relation (ignor-
ing the T1 relaxation of the low-gamma spins):

Gnð1Þ ¼
TrfSze�iHT t ½aIz þ Gn�1ð1ÞSz�eiHT tg

TrðS2
z Þ

�����
t!1

¼ TrðSze�iHT taIzeiHT tÞ
2N�2

����
t!1
þ Gn�1ð1Þ

� Gn�1ð1Þ
TrðSze�iHT tIzeiHT tÞ

TrðS2
z Þ

�����
t!1

ð7Þ

The first term is just G1(1), G0(1) = 0, and the above relation
can be rewritten as:

Gnð1Þ ¼ G1ð1Þ þ Gn�1ð1Þ½1� G1ð1Þ=a� ð8Þ

which can be summed up as a geometric progression to yield:

Gnð1Þ ¼ G1ð1Þ
1� ½1� G1ð1Þ=a�n

1� ½1� G1ð1Þ=a�
! aðn!1Þ ð9Þ

For instance, if G1(1)/a = 0.9, after just two multiple contacts
99% of the thermodynamic limit will be transferred.

3. Cross-polarization in the presence of dynamics

When the Hamiltonian is time dependent, the ensemble-aver-
aged solution is obtained using superoperators and the vec-opera-
tor. Due to the fact that the Liouville–von Neumann equation has a
form of the Lyapunov matrix equation, AXBT + CXDT = Q, its formal
solution can be written as:

hvec qðtÞi ¼ exp0 i
Z t

0
Lðt0Þdt0

� �
vec qð0Þ

	 

ð10Þ

The vec operation simply stacks up the column vectors of the den-
sity matrix to form a total vector of 4N elements, and ve-
c(AXBT) = (B � A)vec X, where ‘‘�’’ stands for the Kronecker
product. The symbol ‘‘O’’ denotes the Dyson time ordering. The
Liouvillian ‘‘commutator superoperator’’ L(t) is given by:

LðtÞ ¼ HTðtÞ � 12N � 12N � HTðtÞ ð11Þ

Here 12N is a unit matrix of the size 2N � 2N. The solution for the
magnetization transfer is then given by the scalar product:

GðtÞ ¼ ðvec SzÞThvecqðtÞi ð12Þ

For the motions that have sufficiently short correlation time com-
pared to the variation of G(t), the solution can be truncated using
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the generalized cumulant expansion [21,22] up to the second order,
which yields:

hvecqðtÞi ¼ exp0 i
Z t

0
dt0hLðt0Þi �

Z t

0
dt0
Z t0

0
dt00 hLðt0ÞLðt00Þi½

(

� Lðt0ÞihLðt00Þih � þ � � �gvecqð0Þ ð13Þ

For a Markov process, the correlation function depends only on the
difference s = t0 � t00, and in the short correlation time limit we
obtain:

hvecqðtÞi ¼ exp0 ithLðtÞi�
Z t

0
dsðt�sÞ½hLðsÞLð0Þi� hLðsÞihLð0Þi�

� �
vecqð0Þ

	 exp ithLðtÞi� t
Z 1

0
ds½hLðsÞLð0Þi� hLðsÞihLð0Þi�

� �
vecqð0Þ

ð14Þ

The first term in the exponential superoperator is just the Liouvil-
lian, Eq. (11), albeit with time-averaged coupling constants scaled
by the local order parameters. If the motions of the spins are as-
sumed to be stochastically independent, the second term contains
the squares of superoperators corresponding to the interactions
for each pair of spins multiplied by a quantity having the meaning
of spectral density. Clearly, considering both many-body spin
dynamics and the motions of all spins at the same time is a daunt-
ing task [23]. Therefore, for simplicity, let us consider the motion of
only one bond between the S-spin and its covalently bonded proton,
and neglect the motion of the bath protons. Correlations to the
distant protons decay quickly as their distance to the nitrogen spin
increases. As the next approximation, we describe the restricted
motions of the bond by a simple diffusion-on-a-cone model. The
interaction constants an in Eq. (2) can be written in terms of the
second-rank spherical harmonics:

an ¼ v
ffiffiffiffiffiffiffiffiffi
16p

5

r
Y ð2Þ0 ðhn;unÞ ð15Þ

Here the coupling constant (in rad s�1) is given by: v = (l0/4p)(cIcS

⁄/rIS
3), where cI and cS are the gyromagnetic ratios of the high and

low spin, respectively, and rIS is the interspin distance. Since the
motion of only one bond (with the first proton) will be considered,
we shall omit the index n in the subsequent equations. To calculate
the correlation function we use the following transformation prop-
erty of the spherical harmonics:

Y ð2Þ0 ðh;uÞ ¼
X2

m¼�2

Y ð2Þm ðhB;/BÞD
ð2Þ
m0ða;b; cÞ ð16Þ

Here hB is the bond angle with respect to the axis of the cone, uB is
the random azimuthal angle, and the Euler angles a, b, c in the Wig-
ner matrix D(2)(a, b, c) define the orientation of the cone relative to
the laboratory frame. The total correlation function corresponding
to the motion of the bond can, therefore, be decomposed as:

hY ð2Þ0 ðhðsÞ;uðsÞÞY
ð2Þ
0 ðhð0Þ;uð0ÞÞi

¼
X2

m¼�2

hY ð2Þm ðhB;/BðsÞÞY ð2Þ�mðhB;/Bð0ÞÞid
ð2Þ
m0ðbÞd

ð2Þ
�m0ðbÞ ð17Þ

The individual correlation functions are calculated by standard
methods as [24]:

hY ð2Þm ðhB;/BðsÞÞY ð2Þ�mðhB;/Bð0ÞÞi

¼
Z 2p

0
d/B

Z 2p

0
d/ð0ÞB Y ð2Þm ðhB;/BÞY ð2Þ�mðhB;/

ð0Þ
B ÞPð/B;/

ð0Þ
B ; sÞpð/ð0ÞB Þ

ð18Þ

Here pð/ð0ÞB Þ ¼ 1=2p, is the initial distribution function. The proba-
bility density P(uB, uB

(0), s) is obtained from the solution of the
isotropic angular diffusion equation in u having a diffusion coeffi-
cient D||:

Pð/B;/
ð0Þ
B ; sÞ ¼ 1

2p
Xþ1

m¼�1
eimð/B�/ð0ÞB Þe�Djjm2s ð19Þ

Explicit integration over the angles and using the expressions for
the reduced Wigner matrix elements, dð2Þmm0 ðbÞ, yields:

hY ð2Þ0 ðhðsÞ;uðsÞÞY
ð2Þ
0 ðhð0Þ;uð0ÞÞi

¼ 5
16p
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8
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#
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Time integration of the total correlation function in the second-or-
der cumulant gives rise to the zero-field spectral density:

Jð0Þ �
Z 1

0
ds½hY ð2Þ0 ðhðsÞ;uðsÞÞY
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16p
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For instance, setting b = p/2 would correspond to the perpendicular
orientation of a membrane protein relative to the main magnetic
field, such as observed in magnetically aligned bicelles [25]. Here
the coupling constants in the time-averaged Liouvillian of Eq. (14)
are scaled by the order parameter (3cos2 b � 1)/2 = �0.5. Due to
the symmetric nature of Eq. (21) the angle b can also be treated
as the amplitude of the local motions confined to the surface of
the cone when its average orientation is described by the static
bond angle, hB. More complicated models describing restricted mo-
tions of the spins can also be considered [26,27]. The solution for
the ensemble-averaged density matrix can therefore be written in
an explicit matrix–vector form:

hvecqðtÞi ¼ expft½ihLðtÞi � v2Jð0ÞC2�gvecqð0Þ ð22Þ

where the superoperator matrix C is given by:

C ¼
SþIð1Þ� þ S�Ið1Þþ
� �

4
� 12N � 12N �

SþIð1Þ� þ S�Ið1Þþ
� �

4
ð23Þ

It should be noted that Eq. (22) describes evolution under the time-
averaged many-body Hamiltonian as well as relaxation due to mo-
tions, and the time evolution is no longer unitary.

4. Results

4.1. Simulations

Simulations were performed using synthetic coordinates of an
ideal polyalanine a-helix tilted at 30o with respect to the main
magnetic field. Fig. 1 shows simulations including single nitrogen
coupled to the various numbers of protons as indicated. The mag-
netization at the nitrogen spin has been calculated from Eq. (3) in
units of a using a MATLAB script. For Fig. 1d (N = 14 spins), direct
diagonalization was not possible, and the ‘‘expv’’ routine was used
instead [28]. As can be seen, the quasiequilibrium fluctuation
amplitudes decrease with the increasing number of protons. More-
over, regardless of the number of protons considered, the quasista-
tionary magnetization amplitude at the nitrogen spins never
reaches the thermodynamic value, a. The quasistationary (time-
averaged) magnetization amplitudes have been calculated directly
from Eq. (6) and can be compared to the values obtained from the
plots. For N = 8 spins, Eq. (6) yields: 0.8097; and thereafter shows a



Fig. 1. Cross-polarization build-up as a function of the number of spins in the simulation. (A) 8 Spins. (B) 10 Spins. (C) 12 Spins. (D) 14 Spins. The amplitude of quasi-
equilibrium fluctuations decreases as the number of spins in the system increases; whereas the quasistationary magnetization never reaches the thermodynamic limit
(normalized to 1). In part (C), dashed line shows simulation with the full Hamiltonian, Eq. (1), with xI = xS = 100 kHz.
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slight tendency towards higher values as the number of spins in
the simulation increases: 0.8179 (N = 10); 0.8494 (N = 12); and
0.8648 (N = 13). Interestingly, for an adiabatic transfer, Sørensen
reports [11] convergence to the factor 0.8 relative to the value ob-
tained from the conservation of entropy argument. In addition,
Fig. 2c demonstrates close agreement between the simulations
using the full Hamiltonian, Eq. (1) (dashed line) and its truncated
variant, Eq. (2) (solid line). Fig. 2 shows simulations in the presence
of local dynamics as described by Eqs. (12) and (22). Calculations
were done using the ‘‘expv’’ routine [28]. Fig. 2a shows a two-spin
(N = 2) simulation using Eq. (22) for D|| = 106 s�1, b = 90o, which
corresponds to the timescale of uniaxial diffusion of a membrane
protein in magnetically aligned bicelles [25]. In this case relaxation
drives the magnetization to the final value of 0.5. When a bath of 8
protons is added (N = 10), the effect of local dynamics becomes less
pronounced, cf. Fig. 2b. Here the final magnetization slightly in-
creases as compared to the solution obtained from the static Ham-
iltonian with time-averaged coupling constants (dashed line). The
Fig. 2. Effect of slow dynamics on CP build-up curves. (A) Two-spin case, D|| = 106 s�1, b =
parts (B) and (C) the dashed lines shows the solution obtained with time-averaged coup
increase in the transferred magnetization becomes even more dra-
matic in Fig. 2c, where D|| = 105 s�1 which is likely at the limit of
the short correlation time approximation, Eq. (14). However, when
D|| is increased to 109 s�1 and b = 10o in Fig. 2c, which could be
used to model internal fluctuations of the N–H bonds, for example,
the effect of local dynamics on the CP transfer becomes negligible
(results not shown). In this fast motional limit, the dipolar cou-
plings are simply scaled by the motional order parameters, which
do not affect the final amount of the transferred magnetization,
only the transfer rate.

4.2. Experimental

In the present work, a small (0.7 mg) 15N-labeled single crystal
of n-acetyl Leucine was used, which exhibits four sharp resolved
resonances corresponding to four distinct orientations of the N–H
bonds. Direct experimental determination of the efficiency of cross
polarization is in general difficult. For instance, 15N spins in single
90o; (B) 10-spin case, D|| = 106 s�1, b = 90o; (C) 10-spin case, D|| = 105 s�1, b = 90o. In
ling constants for comparison (cf. the text).



Fig. 3. Pulse sequences used in the NMR experiments. (A) Inverse CP; (B) Multiple-contact CP. During the z-filter (typically applied for several seconds) the proton spins fully
relax to thermal equilibrium; whereas the nitrogen magnetization is stored along the z-axis due to its much longer T1 relaxation time.

Fig. 4. (A) Inverse CP experiment for an NAL crystal at arbitrary orientation showing residual magnetization on the nitrogen spins obtained using the pulse sequence of Fig. 3a
as compared to a single-contact CP spectrum (2 k scans; 3 s z-filter; 5 ms contact times; xI = xS = 56 kHz). (B) Comparison of multiple-contact experiment (Fig. 3b) with
single-contact CP for an NAL crystal at arbitrary orientation (128 scans; 4 s z-filter; xI = xS = 56 kHz; 1 ms contact time for six multiple contacts and 5 ms for the single CP).
Multiple contacts allow one to transfer additional magnetization to the nitrogen spins.
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crystalline species can hardly be detected owing to their low
gamma ratio, on the one hand, and a very long T1 relaxation time
(on the order of tens of seconds), on the other. Therefore, here
we use an indirect method depicted in Fig. 3a. After the initial CP
contact, both the nitrogen spins and the protons are brought along
the z-axis, and a wait time of several seconds is applied to ther-
mally equilibrate the proton spins. Then only the nitrogen spins
are flipped back in the direction of the x-axis, followed by their
simultaneous irradiation together with the proton spins under
the Hartmann–Hahn condition. If full thermal equilibration indeed
occurs in such a ‘‘reverse CP’’ experiment, there should be no
detectable magnetization left on the low spins. Contrary to this
expectation, however, an appreciable magnetization still remains
as can be seen from Fig. 4a. To check whether this might be a con-
sequence of a Hartmann–Hahn mismatch, additional measure-
ments have been performed by varying the rf amplitude of the
low spins near the experimentally determined Hartmann–Hahn
condition, which exhibited equal or greater residual magnetization
on all four resonances (results not shown). Next, multiple contacts
(cf. Fig. 3b) between the low- and high-gamma reservoirs were
employed to overcome the quantum mechanical limit of a single
cross-polarization contact. Here, the magnetization is transferred
back and forth between the spins until the thermodynamic limit
is achieved. As can be seen from Fig. 4b (inset), additional magne-
tization can indeed be transferred. The number of contacts has
been varied from 2 to 6, which yielded similar intensities of the
spectra. From integrating the spectra in Fig. 4a, the residual mag-
netization remaining at the nitrogen spins after the inverse CP
experiment is calculated to be at around 8% relative to a single-
CP transfer. On the other hand, the integral ratio of the two spectra
in Fig. 4b is about 1.2, from which the amount of the residual mag-
netization after the inverse CP contact is calculated to be at 17%.
The sum factor calculated from Eq. (6) is around 13% for a system
of 13 spins, which places it between the two experimental values
(it should be noted, however, that a slight trend in the increase
of the transferred amplitude with the number of spins is observed
in the simulations).
5. Conclusions

In the classical cross-polarization scheme of static crystalline
solids, thermal equilibrium in the doubly tilted rotating frame can-
not be established within the timescale of a single transfer (typi-
cally several milliseconds). This would imply that the spin
system does not have sufficient time to exchange its energy quanta
with the lattice having an astronomical number of degrees of free-
dom. As a result, within the timescale of the cross-polarization
experiment, a Boltzmann distribution is not established in such
an isolated spin system. It has been shown both quantum–
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mechanically and experimentally that at least 8% of the residual
magnetization remains on the low spins after a single cross-polar-
ization contact with the unpolarized proton bath. By inverse argu-
ment, we conclude that the full thermodynamic limit cannot be
transferred to the low spins from the high spins in a single CP
experiment. However, the thermodynamic limit can be achieved
through multiple contacts via thermal relaxation of the multiple
quantum coherences formed after each CP step. Generalized cumu-
lant expansion together with the vectorization of the density
matrix represents a convenient and compact way of treating ran-
dom time-dependent Hamiltonians. It has been found that local
dynamics modeled as a simple diffusion on a cone can affect the
final equilibrium magnetization and the amplitude of transient
oscillations when the motions are sufficiently slow. This, in turn,
may allow one to extract dynamic information for macroscopically
oriented samples such as membrane proteins from a detailed anal-
ysis of their CP build-up curves.
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